R and Calc Integration

User's Guide
v.0.1.12

Table of Contents

INEFOQUCTION. ...ttt ettt sttt et s bt ettt b e s bt ettt e s eanees 3
INSTAITATION. ...ttt et b e s bbbttt b e bt et et e bbbttt nee s 3
Installing Using the EXtension Manager...........ccccecveeiereririeieneneneeeeeseseesee ettt 3
Installing the Package Manually............cocooiiiiiiiiiiiiiiiieieeeeee et 4
Recommended R PacKages........coooviiiniiniiiiiiieecce ettt 5
USING the AdG-0N.....ciiiiiiiiieieeieeeee ettt et st s e s bt et e bt et et e st e saeesaeebeesannees 5
SEArtING RSEIVE. ...ttt sttt e e e 5
Using the DI1alog WINAOWS........cocuiiiiriiiiiniieriteieeteete ettt ettt st et st e st ebe et e tesaaesabeeeas 6
Notes on Data Manipulation............couerierieiiiiiiiienteee ettt sttt st et siee e e e 7
COAINZ WINAOW.....c..eiiiiiiiiiiieeereet ettt sttt ettt e b saesbe e enessesaeenaeesaneens 7
AVOIAING PATSINE. ..c..eiiiiiiiiiiiiteee ettt ettt sbe e et e st e e eateeeaeee s 11
WINEZ GUI FILES. ..ottt s e 11
Scripting the GULL.......oouiiiee ettt sttt et e 12
RUSCIIPUNE. ..ttt et b ettt et sat e sbeesbe e st e e st e e e sabeeenaneeas 13
Data VISUALIZAION.c..ceiuiiiiiiieiiietctctereet ettt ettt sttt sn et 14
Using RDUMP fOr ODbJECt StIUCTUTES......couvirtiiriiiiiiiieieritesiteteeie ettt ettt st 16
Add-On ATCRITECIUTE.........eitiiiiiiieiieieteeeet ettt ettt et sttt ettt sbe bt et e s bt s beesaeeebeeeee 17
Appendix 1: Commonly Used Properties of Various R Calls..........ccccceevieviieiiniinieniieeeiie e 18
INUMETIC CALLS.... ettt sttt et st e sbe e st e b e e naee 18
(o0 W (2] 1 () OO UUUTRR 19

Please note that this manual is current as of February 23, 2008.

Introduction

RCalc is Java-based add-on for OpenOffice.org versions 2.1 and above. It allows you to send
data from a Calc spreadsheet to R and write the outputs directly into the spreadsheet. In addition to
a basic coding window where one can write R scripts, RCalc also comes with built-in Calc
functions that allow basic R commands to be passed directly from cells, and also a GUI scripting

tool to create user interfaces for automating statistical processes.

This package was developed with the support of Google, through its Summer of Code

program in 2007.

Installation

Installing the package can be done in one of two ways, either through downloading the
compiled package and using unopkg, or compiling the entire program from its source code. In both

cases, however, the following software is needed:
e OpenOffice.org 2.1 or higher
e R
e Rserve 0.4.7 — note that only this version is supported.

Additionally, those interested in compiling the software need to have the OpenOffice.org SDK

installed.

Installing Using the Extension Manager

The easiest way to get the add-on running in Calc is by going to Tools > Extension

Manager. Once in the manager window, simply click on Add and find the RAddon.uno.pkg file you
downloaded and click open. Once the package is installed, restarted OpenOffice and a new menu

button should appear at the top of the Calc window.

Installing the Package Manually

To install the package alone, you need to download the RAddon.uno.pkg file from the R/Calc

wiki, or a mirror thereof. The latest version of the program is always available at:

http://wiki.services.openoffice.org/wiki/R_and Calc

Once this has been downloaded, go into the Command Prompt in Windows or the Terminal in
Linux and change the directory to <OOHOME>/program where <0OHOME> is your Openoffice.org

home directory. Once there, type:

unopkg add <RADDON PATH>/RAddon.uno.pkg

where <RADDDON PATH> is the path to the Raddon . uno.pkg file you downloaded.

The add-on depends on on Rserve, which can be installed in R. Briefly, here are the three

commands in R that load and activate Rserve:
e install.packages("Rserve")
e library(Rserve)
e Rserve()

More information is available at http://cran.r-project.org/ and http://rosuda.org/Rserve/.

http://cran.r-project.org/

Recommended R Packages

In addition to the R base package, the built-in GUI functions that come with the add-on use
packages that may need to be installed in addition to these packages. To experience everything the

add-on has to offer, the following packages should be installed:
e odesolve

e scatterplot3d

e sna
e survival
Using the Add-on

The add-on itself is built to allow one to use R's statistical functions without prior knowledge
of the scripting language itself. As such, it comes with a large amount of dialog-based functions
through which one can input information and simply receive outputs. This section is meant to
illustrate how one can start using the add-on, and pass information to R using the dialog-based

tools.

Starting RServe

At the time of writing, the add-on is unable to launch R and RServe from within OpenOffice,
so the two must be launched manually. Assuming they have been installed properly, one can do

this by launching R and running the following code:

library(Rserve)
Rserve()

This will launch the server, and the add-on should automatically detect the server when R calls

are made.

Using the Dialog Windows

A fairly complex example for a dialog window is given below, which can be seen by clicking

on the correlation menu item under the add-on menu.

Correlation

Column 1: |

Column 2:

Method: pearson -
Alternative: two.sided -
Conf. Level: 0.95

[Out] P Value
[Out] Estimate
[Out] Lower Conf.
[Out] Upper Conf.

[Out] Statistic

Bun

. -

In the add-on, all of the input variables required are placed at the top of the dialog, while
information sent to the spreadsheet is preceded by the [out] prefix. Thus, the dialog window
above accepts two different columns of data ,the correlation test and type, as well as a confidence
interval value. The last three options have default values already entered when the dialog window

starts.

One can send data to R using these dialog windows in a similar manner to other forms in Calc.

By writing the addresses of the various cells, the add-on will send the appropriate data to R. For

the sake of this example, support we have a spreadsheet similar to the cropped image below.

A | B |
1 1.45 1.55
2 0.53 0.45
3 0.5 0.47
4 0.36 0.54
5 0.31 0.29
6 0.08 017
7 0.44 0.23
8 0.55 0.3
9 0.66 0.64
10 1.27 0.81
11 1.33 1.24
12 1.38 1.34
13 1.4 1.3
14 1.58 1.36
15 1.67 1.84
1&

If we wanted to pass this information to R and run a correlation test to obtain the confidence
interval, correlation estimate, and the P value, we would first type A1:215 and B1:B15 into Column
1 and column 2 form fields, respectively. Supposing we want the outputs to be sent to column D,
we would put D1 for P value, p2 for the estimate, b3 for Lower Conf., and p4 for Upper Conf.

Clicking run will then calculate the various values and send them to the spreadsheet.

Notes on Data Manipulation

It is important to note that when dealing with missing values, R uses the Na keyword to denote
a missing value. In the add-on, a similar process should be adopted, though empty cells are also
treated as missing values. Other text-based cell values, such as a period or asterisk, are sent
without any modification to R. This can cause errors when analyzing data, and care should be

taken to avoid such problems.

Coding Window

The coding window is available in the R Add-on menu, by going to Advanced > Coding

window. The window allows one to write or load R scripts, directly reference data from Calc

spreadsheets, and send output back to the sheets themselves.

Coding in the Window is similar to writing scripts in R, with the main addition being reading
data from the spreadsheet and sending output back. To read data from the spreadsheet, one simply

needs to reference the necessary cells surrounded with curly brackets and the pound sign, like so:

{#Al}

or

{#A1:C10}

The add-on will convert these values to the necessary commands when code is being

executed.

Sending output is similar, though requires knowledge of the R object structure, which is
described in another section of this manual. The code for outputs is based on assigning values to

variables in R. Thus, it follows the following structure:

[Target Cell] <- [Value]

In this case, the target cell needs to be marked with $ouT to denote it is used for outputs, like

SO:

{$OUT#A1}

The coding window takes two types of line of code: R scripts and output commands. It is not
possible to mix commands with output. As such, if you would like to output the variance of the
numbers, 1, 2, and 3 into cell 21, one line of code needs to find this value and the second line is the

output command. If the R script returns a real number, using the {$Base} keyword will allow you

to print the resulting value in a cell. Thus, you would write:

var(c(1l,2,3))
{SOUT#A1}<-{$BASE}

One can denote matrices by appending [x] to the variable name or keyword, where x is the
index of the array element. For example, if we generate 10 random numbers and want to put the

third number into cell c3, the following code would be used:

rnorm(10)
{$OUT#C3}<-{$BASE[3]}

As mentioned in the discussion on the R object structure, complex objects actually have
properties or values that have names in them. In these cases, one would not use the $Base keyword
but instead the name of the actual property. A typical example is the Pearson correlation test in R,
which is accessed through the cor.test () function. The object structure for output from this
function is complex because it contains the correlation (called est imate), the P value (called
p.value), a two-element array for the confidence interval (called conf . int), and other

information. In this case, we would use the property names to print the output to a cell, like so:

cor.test(c(1,2,3,4), c(1,1,2,3))
{$SOUT#Al}<-estimate
{SOUT#A2}<-p.value

Furthermore, if you can access such values using the $sBask key word by calling them like you

would in R. For example:

correlObj <- cor.test(c(1,2,3,4), c(1,1,2,3))
correlObj$estimate
{$OUT#C1}<-{$SBASE}
correlObjs$p.value
{SOUT#C2}<-{$SBASE}

The code above will have the same results as the earlier example.

For the confidence interval, we would use the array indices:

{$OUT#A3}<-conf.int[0]
{$SOUT#A4}<-conf.int[1]

If you try to print a property with a name that does not exist, the add-on will simply print the
actual name in the cell. This is useful to note because if you would like to print text (for example,
to label output), simply write it as an assignment. Finally, lines can be commented out using the //

sign at the start of the line.

With this in mind, the script below takes two columns, runs the correlation test, and then

prints the output to a final column.
// R Script.
cor.test({#A1:A10}, {#B1:B10})
// Labels.
{$SOUT#Cl}<-Correlation Estimate
{SOUT#C2}<-P Value
{$SOUT#C3}<-Confidence Interval (Lower)
{$SOUT#C4}<-Confidence Interval (Upper)
// Values.
{$SOUT#D1}<-estimate
{$SOUT#D2}<-p.value

{$SOUT#D3}<-conf.int[0]
{$OUT#D4}<-conf.int[1]

It is also possible to add matrix output to a spreadsheet. In this case, you need to know the
exact dimensions of the matrix being sent to the spreadsheet, and would write the coordinates by
writing [start cell]:[end cell] in the formats listed above. For example, we know that
conf.int is an array with two members: a lower bound and an upper bound. As such, we can

rewrite the last two lines of the code above to the following:

10

{$OUT#D3:D4}<-conf.int

Avoiding Parsing

If for some reason the script you are writing should not be parsed by the add-on before being
sent to R, you can start the line by writing LIT: to avoid parsing. For example, this is useful when

writing code that includes { and }, because this syntax is normally parsed by the add-on.

Using ©17: allows you to define your own R functions and use loops and conditional
statements in the scripting window. The only catch is they all need to be on one line, and no
outputs are analyzed following a LIT: statement. As such, one would need to use R-based
variables to run calculations, and then call them on a new line before sending them as output to a

cell.

For example, suppose you wanted to make a linear function that simply takes an input x and
returns mx+b where m and b are pre-defined constants. The code below would define such a

function in the scripting window, call the function, and send the output to cell a1.

LIT: linFunc <- function(x) { m = 3; b = 2; return(m*x + b); }
linFunc(3.7)
{SOUT#A1}<- {$BASE}

Writing GUI Files

The graphical windows available within the add-on use the same scripting language as the
coding window for the actual communication with R. The main difference is they also come with a
layout component, where one can add specific types of graphical interfaces to allow other users to

easily use the add-on, without actually needing to know how to use R itself.

These files are organized into three sections:

11

1. __Etc: This section is a section for comments, and is ignored when loaded into the

add-on.
2. __cuz: This is where the user interface code is placed.
3. __carL: The actual script is included here, and is used in much the same way as the

coding window.

Scripting the GUI

Every line in this section follows the same pattern:

[Object Name] <- [Object Type](
[x position], [y position],
[width], [height],
[additional information])

In this case, the [Object Name] is simply a way to represent the object's value in the scripting
section of the code. The [Object Type] is the actual name of the object type, and is similar to a
function call. The parameters of the call start with the x and y position of the object, with the origin
being at the top left corner of the dialog window. The height and width represent the size of the
object in pixels. The [additional information] section allows one to pass additional
information, such as the title of the dialog window, text within the label or button, or similar
values. The table below lists all of the available objects within the add-on, along with what

[additional information] actually does.

Object Type Description What [add. info.] does.

Dialog The dialog frame. Changes the title of the window.
Label A basic label. The text within the label.
RunButton Button to launch the The text in the button.

12

script.

CancelButton | Button to close the The text in the button.
window without
executing any scripts.

TextField Accepts text inputs. The default value.

NumberField | Accepts an address for | The default value.

one cell in the

spreadsheet.
ArrayField Accepts the address of | The default value.
multiple cells in a
spreadsheet.
ComboBox A combo box with A list of options, delimited by a
various options. semi-colon (*;””). The first item in

the list is the default.

OutputField | Accepts the address for | The default value.
outputting a specific
value.

The only requirement in the GuT section is that there needs to be a Dialog object instantiated,

and that it must be the first object in the list.

R Scripting

The last section of the file contains information on both code execution and outputting results
into the spreadsheet. At its most basic, the code works just like the coding window scripts. The
only difference is that fields and combo boxes may be called for information — this feature is not

available in the coding window.

To reference an input field, such as a NumberField or ArrayField object, simply write

{sNAaME } where NAME is the name of the object. For example, if we instantiate a number field using

13

the code below,

NUMF<-NumberField(10,10,100,12)

then we can reference the value in the field by writing,

{SNUMF}

Output fields are referenced the same way. The only difference is that to actually send the
value to the proper cell, the word $ouT must precede $naMe. Thus, if we instantiate an

outputField with the code below,

OFIE<-OutputField(10,10,100,12)

then we can send the text Hello World to the cell whose address is in the field with the

following code,

{SOUTSOFIE}<-Hello World

If you are interested in using the curly braces, { and }, within the R code here, you need to use
special representations of them. Otherwise, the add-on will think they are surrounding a variable
name and an error will occur. The special representations are both variables that point to the

braces. So for {, use {$cURLL} and for }, use {SCURLR}.

Data Visualization

The add-in supports visualization of data in two ways. First, if one simply writes code that
outputs a visual result (for example, plot (rnorm(25), rnorm(25)), then R will automatically

create a new window to display the output. However, this method is not recommended because the

14

window will not update its image unless "Run" is clicked again.

The add-on also features a built-in tool that allows R graphics output to be embedded as an
1mage in the actual spreadsheet. Doing so allows one to make plots and data visualizations, save
the sheet, and view the output later without having to use R a second time. To insert an image into
the sheet based on a plot, simply write PLOT: on the line whose graphical output should be inserted
into the sheet. This will create a JPG file and embed it within the document. PLoT_pPNG: will do the
same with a PNG file rather than a a JPG, and pLoT_gPS: will use an EPS file.. An example is

shown below:

PLOT: plot(rnorm(25), rnorm(25))

Images can also be imported manually. If you save an image through R, writing TMPORT_ABS:
followed by the file location as a URL (for example,
file:///C:/Windows/Temp/myPicture. jpg) will import the image. Thus, one can manually
write scripts that embed images in the spreadsheet. The code below shows an example using a plot
command.
// First, we create a new graphics device.
JPG(filename="/home/user/Desktop/myimage.jpg")

// Plotting random numbers.
plot(rnorm(25), rnorm(25))

// Shutting the device off.
dev.off()

// Embedding the image.
IMPORT ABS: file:///home/user/Desktop/myimage.jpg

These graphics commands can be used within both the GUI scripting tool, and the Coding

Window.

15

Using RDUMP for Object Structures

RDUMP is a basic tool that prints the entire object structure returned by an R script. It does not
have support for inputting data from spreadsheets, as its goal is simply to shed light on the R
structure of specific calls made to R. This allows one to see the names of properties available for a

specific call, and whether or not these properties are arrays.

To use the tool, simply go to the add-on menu and click Advanced > Dump R Output. The

tool is simple in that it accepts only one line of code. Type the code below:

cor.test(c(1,2,3), c(1,2,10))

This will create a new spreadsheet, with the actual code on the first row and subsequent rows
containing property names and values. The specific output for the code above should look similar

to this:

_ CALLED: cor.test(c(1,2,3), ¢(1,2,5))

statistic 3.46
parameter 1
p.value 0.18
estimate 0.96
null.value 0
alternative two.sided

Within this tool, property names appear on the first column and values on the second column.

Array values are printed on multiple lines.

If a property has no name but is a numeric value, then the name numeric is given to the
property. Otherwise, unnamed non-numeric properties simply have a . as the name. For example,

the output for rnorm (10) is shown below, which returns a numeric array of 10 values.

16

__ CALLED: rnorm(10)

numeric 0.81
numeric -0.3
numeric 0.07
numeric -1.08
numeric 0.04
numeric -0.29
numeric -1.06

The example below calls (.packages ()), which is an array of text values.

__CALLED: (.packages())
stats
graphics
grDevices

utils

datasets

Add-On Architecture

The add-on is organized in a way that allows one to easily upgrade the actual R interface
without making major changes to the add-on itself. Specifically, this is done through the use of the
RCalcCaller class, which works as the main bridge between various classes in OpenOffice and R
itself. The coding window and GUI tools both implement the RCalcInterface interface, which is

used by RCalccaller to organize inputs to R and send outputs back to spreadsheets.

RCalcDump is a unique feature of the add-on because it does not implement RCalcInterface
but communicates with R directly. This is because the software actually scans the entire R object
structure that is returned to it, and as such does not work in the same way as other parts of the add-

on. Functions themselves also work in a different manner, as they do not allow for specific object

17

properties or values to be returned to a cell. If one is willing to implement this, it is recommended

that the engine start implementing the RCalcInterface.

For clarity, a basic diagram of the various classes is drawn below.

OpenOftice.org Calc

<

RCalcInterface

&

&

RCalcCoder

RCalcParser

RCalcDump

RCalcFunctions

¥

RCalcCaller

4

Appendix 1: Commonly Used Properties of Various R Calls

The list below is meant as a reference for people interested in coding or programming in the

R/Calc add-on. It provides the names of some properties available for the calls, and can help one

become more familiar with scripting in the add-on.

Numeric Calls

Any R script that simply returns a number, such as var (), cor (), rnorm (1), and so can be

sent to a cell using the {$Base} keyword.

18

Similarly, numeric arrays can be accessed with {$BASE[x]} where x is the index of the array

member.

cor.test()

Property Name Type Description

estimate number The correlation.

p.value number The P value of the estimate.

null.value number The null hypothesis.

alternative text The type of test (e.g. “two-
sided”).

method text Type of correlation (e.g.
“Pearson”).

conf.int numeric array (2 members) An array with the confidence
interval. The member at index
0 is the lower bound, while 1
has the upper bound.

19

	Introduction
	Installation
	Installing Using the Extension Manager
	Installing the Package Manually
	Recommended R Packages

	Using the Add-on
	Starting RServe
	Using the Dialog Windows
	Notes on Data Manipulation

	Coding Window
	Avoiding Parsing

	Writing GUI Files
	Scripting the GUI
	R Scripting

	Data Visualization
	Using RDUMP for Object Structures
	Add-On Architecture
	Appendix 1: Commonly Used Properties of Various R Calls
	Numeric Calls
	cor.test()

